Custom Inference Script — OCR Model on IBM Application Suite-Visual Inspection

Ilustrasi-1: Flow OCR System. Source : https://github.com/IBM/license-plate-ocr

Create Kubernetes

Ilustrasi-2: Create Kubernetes on IBM Cloud
Ilustrasi-3: Kubernetes Cluster
Ilustrasi-4: Worker Nodes Detail
Ilustrasi-5: Custom.py Script

Langkah-Langkah Create Model Maximo Visual Inspection

Ilustrasi-6: IBM Application Suite-Visual Inspection Login
Ilustrasi-7: IBM Maximo Application Suite-Visual Inspection Home Page
Ilustrasi-8: Create Dataset
Ilustrasi-9: Import Files
Ilustrasi-10 : Labeling Result
Ilustrasi-11: Augment Data
Ilustrasi-12 : Augment Data Process
Ilustrasi-13 : Augment Data Result
Ilustrasi-14: Training Process
Ilustrasi-15: Training Result
Ilustrasi-16: Custom Inference Script Prepare
Ilustrasi-17: Import Custom Inference Script
Ilustrasi-18: Create Custom Inference Script (Name)
Ilustrasi-19: Deploy model with Custom Inference Script
Ilustrasi-20: Deploy Model
Ilustrasi-21: Deploy Model Result

Kubernetes Result

Ilustrasi-22: Clone Data from Github
Ilustrasi-23: Apply Kubernetes Config
Ilustrasi-24: Check Kubernetes Service
starting server on port 8000
length: 32562012
10.77.223.246 - - [11/Feb/2020 16:47:56] "POST / HTTP/1.1" 200 -
[{'confidence': 0.9984619617462158, 'ymax': 918, 'label': 'car', 'xmax': 1418, 'xmin': 409, 'ymin': 257, 'polygons': [[[751, 244], [679, 292], [499, 292], [463, 315], [427, 315], [391, 339], [391, 859], [427, 882], [463, 882], [535, 930], [1292, 930], [1400, 859], [1364, 835], [1364, 788], [1400, 764], [1364, 741], [1400, 717], [1364, 693], [1364, 646], [1436, 599], [1436, 386], [1364, 339], [1364, 315], [1328, 292], [1292, 292], [1256, 268], [1220, 268], [1184, 292], [1148, 292], [1076, 244]]]}, {'confidence': 0.9999994039535522, 'ymax': 664, 'label': 'license_plate', 'xmax': 1216, 'xmin': 1054, 'ymin': 557, 'polygons': [[[1063, 554], [1051, 562], [1051, 616], [1063, 623], [1057, 627], [1063, 631], [1051, 639], [1051, 654], [1069, 666], [1144, 666], [1156, 658], [1162, 662], [1167, 658], [1196, 658], [1208, 650], [1214, 654], [1220, 650], [1220, 562], [1208, 554]]]}]
{'result': 'BFGYGQ6'}
Ilustrasi-25 : Object Detection Result (example). Source : https://github.com/IBM/license-plate-ocr
Ilustrasi-26: OCR Result. Source : https://github.com/IBM/license-plate-ocr
  • Gambar asli yang dipotong/diputar
  • Gambar biner dengan borders removed
  • Gambar dengan edges highlighted (Canny algorithm)
  • Gambar yang diproses akhir dengan noise dihilangkan

--

--

--

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
cahyati sangaji (cahya)

cahyati sangaji (cahya)

More from Medium

Clustering Images using Self-organized Maps

LinkedIn Connection Network Map — Data Visualization Project

Classifying NLP Data for the Service Industry: Comparing 2 Subreddits

Substring Search using KMP (Knuth–Morris–Pratt) algorithm